Consortium

"#GARR

From Clecks to Code

Optical Network Automation Journey at GARR

by Matteo Colantonio

Ol

What didn't
work and why

©2

The Workftlow
Orchestrator
framework

OFC

Our
implementation
without config

managers

Ol

What didn't
work and why

Exp.#1: Ansible

We did upgrade 92 transponders on schedule with AWX
but..

Ansible Shortcomings

Calling one function in a loop:

—— bax_check
— bax_card_checks.yml
L bax_card_restart.yml
L playbook.yml

Devices with TL1 interface? DIY modules!

ENT-OEL: :prova:trnbi:: :LABEL=test,SRCNODENAME=0ls-a,DSTNODENAME=0ls-
b,MODULATION=PM-NONE, RATE=NA,CARDTYPE=UNKNOWN,FREQSLOTPLANTYPE=FREQ-SLOT -
PLAN-NONE ,VALIDFRANGELIST=1913250008196125000,EXPLICITROUTE=0ls-a&l-A-2-
L1&ols-b&1-A-1-L1,0ELSOURCE=MANUAL , GAURDBAND=0,NUMFECITRNS=4:1IS;

Matteo Colantonio (GARR) ITNOG

Lesson Learned

- Great for very simple
procedures

- Better to use
programming lanqgquages
for complex workflows

- Config-centric, not
service-centric

Comple)a"ty of Ansible project

Cumulative complem“ty of procedures

Exp.#2: \Vendor Controller’s API/NBI

Goal: automate optical circuits provisioning

transponder

In-Line Amplifier
ROADM ILA ILA ROADM

Reconfigurable Optical Add-Drop
Multiplexer

router

Manual procedure: ~40-50 clicks across 4 GUIs

NBI Shortcomings

Only Line-to-Line

ROADM ILA ILA ROADM

Didn’t replace clicks:

- pre-provisionig confiqgqurations

- creation of cross-connections on some cards
- fix non-meaningful names, add descriptions

NBI Shortcomings

Only Line-to-Line

ROADM

ILA

ILA

ROADM

ROADM

ILA

ILA

ROADM

Lesson Learned

- Can be a bottleneck

- You’re not in the driving
seat

- Use device interfaces (TL1,
NETCONF, RESTCONF)

Ol

What didn't
work and why

02

The Workftlow
Orchestrator
framework

The Workflow Orchestrator

Developed by m

With QES , open-sourced
and registered in the Commons

Conservancy

workfloworchestrator.orq

Other organizations using it

GEANT /7 HEAnet\ (®

Consortium

GARR

What you get out of the box

An open-source framework where you

Define your Track individual Define clear procedures
network customer (Workflows) for
services/ instances of creating, modifying,
entities those Products validating, and
(Products) (Subscriptions) terminating
Subscriptions

- FastAPI core engine + NextJS Ul
- Everything is stored and tracked in the database

Products: modeling your reality

Define and link your building blocks:

class OpticalFiberBlock(ProductBlockModel,
product_block_name="OpticalFiber"):
fiber_name: str | None = None
oss_id: int
terminations: ListOfPortsﬂOptioalDevioePortBlock]
.. other fields

Turn them into a Product:

class OpticalFiber(SubscriptionModel):
optical_fiber: OpticalFiberBlock

Workflows: making things happen

A list of Python functions (steps) - do whatever you want

Regular step
User input step
Retry step
Callback step
Conditional step
Group of steps

>> reserve_resources_on_netbox

>> confirm_patching

>> check _reachability

>> callback config manager

>> conditional(should_enable_monitoring)(
enable_monitoring

O#H O H OH OH O#H

)

Write code that does not collapse under real-world pressure
to coordinate actions across devices, systems, and people

02

The Workftlow
Orchestrator
framework

05

Our
implementation
without config

managers

From 50 clicks..

Create optical_digital_service +

Easy? No. Worth 1it?

The real value is more than just automating tasks. It’s
managing the entire lifecycle of each service in a
structured, repeatable, and auditable way.

- central definition of your services
- consistent execution of service management

- visibility into the state and history of each service
a reusable toolkit for future services

Hardware changes. Products and workflows stay.

Abstract Composable Models and
Device Clients

- One coherent
architecture of models
that aligns with our
mental models

Abstract Composable
Device Clients

One coherent
architecture of models
that aligns with our
mental models

Clients to decouple
from hardware

Mlodels and

One function to rule them all

Problem: same task, different platform

For example, in a workflow step:

for port in subscription.optical fiber.terminations:
device = port.device

port_name = port.port_name
set_port_admin_state(device, port_name, "up")

Idea: one function with multiple
implementations for each platform

@set _port_admin_state.register(Platform.FlexILS)
def (

optical device: OpticalDeviceBlock,

port_name: str,

admin_state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:

FlexILS implementation

@set _port_admin_state.register(Platform.G30)
def _(..same args..) -> Dict[str, Any]:
G30 implementation

Benefits: keeps code organized, easy to add new platforms,
simplifies workflow logic

Keep it simple, Talk Direct

Problem:
- NBI = loss of control/functionalities
- Ansible = just adds complexity

Idea: communicate directly with devices
like any other API

Benefits: simplicity and
maintainability

Matteo Colantonio (GARR) ITNOG

25

@set_port_admin_state.register(Platform.Groove G30)
def _(
optical device: OpticalDeviceBlock,
port _name: str,
admin_state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:
ids = port_name.split("-")[-1] # port-1/2/3 -> 1/2/3
shelf _id, slot id, port_id = ids.split("/") # 1/2/3 -> 1, 2, 3

g30 = g30 client(optical device.mngmt ip) # RESTCONF client

port = g30.data.ne.shelf(shelf id).slot(slot id).card.port(port _id)

dynamic Path > https://{{host}}:{{port}}{{+restconf}}/data/ne:ne/shelf={{
shelf id}}/slot={{slot _id}}/card/port={{port _id}}

port.modify(admin_status=admin_state) # PATCH method with data validation

return port.retrieve(depth=2) # GET method

@set _port_admin_state.register(Platform.GX_G42)
def (

optical device: OpticalDeviceBlock,
port _name: str,
admin_state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:
shelf id, slot_id, port_id = port_name.split("-") # 1-4-L1 -> 1, 4, L1

g42 = g42 client(optical_device.mngmt_ip)
port = g42.data.ne.equipment.card(f"{shelf _id}-{slot_id}").port(port_id)

port.modify(admin_state=admin_state)

return port.retrieve(depth=2)

05

Our
implementation
without config

managers

Key Take-Aways

Scalable and
maintainable:
composable
models,
instances and
procedures

Opticel Fibar
o

conrgets o

stateful

‘_—/——‘gxh.dg st of

eemngets tem

client ports ™. | Optical Digtel Service
hS

/ s trovsported by
Comm) e

ling ports

Optical Tronspert
Chranarel

trovels inside on

Optical Spectrum
-

Programmable: Use
devices’
programmable
interfaces and
YANG models, not
just config lines

Sustainable
transformation:
automate one
service at a time,
nudge people out
of inertia

Questions?

