

From Clicks to Code

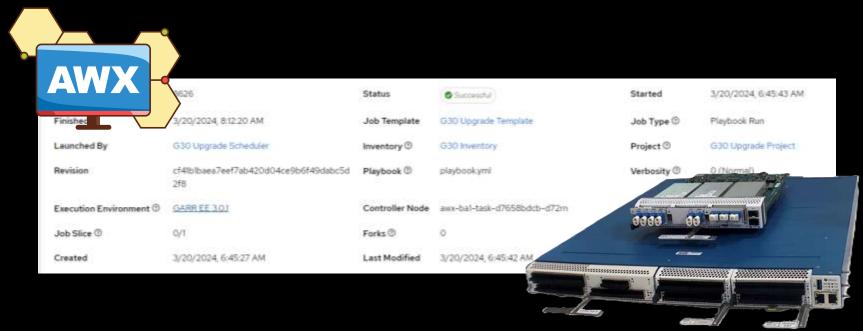
Optical Network Automation Journey at GARR

by Matteo Colantonio

What didn't work and why

02

The Workflow Orchestrator framework


03

Our implementation without config managers

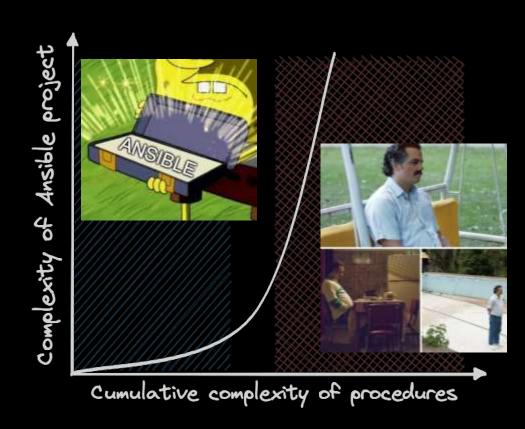
What didn't work and why

Exp.#1: Ansible

We did upgrade 92 transponders on schedule with AWX but...

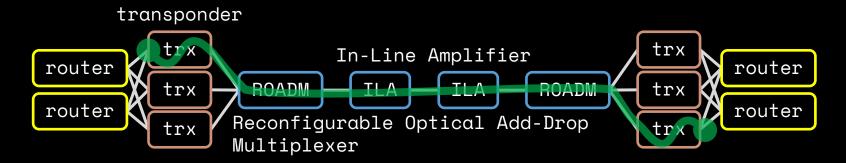
Ansible Shortcomings

Calling one function in a loop:



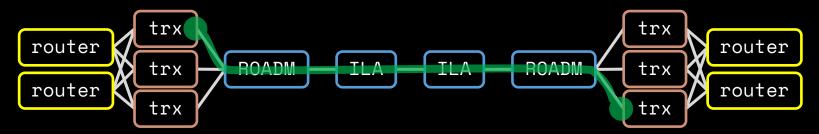
Devices with TL1 interface? DIY modules!

ENT-OEL::prova:trnbi:::LABEL=test,SRCNODENAME=ols-a,DSTNODENAME=ols-b,MODULATION=PM-NONE, RATE=NA,CARDTYPE=UNKNOWN,FREQSLOTPLANTYPE=FREQ-SLOT-PLAN-NONE,VALIDFRANGELIST=191325000&196125000,EXPLICITROUTE=ols-a&1-A-2-L1&ols-b&1-A-1-L1,OELSOURCE=MANUAL,GAURDBAND=0,NUMFECITRNS=4:IS;


Lesson Learned

- Great for very simple procedures
- Better to use programming languages for complex workflows
- Config-centric, not service-centric

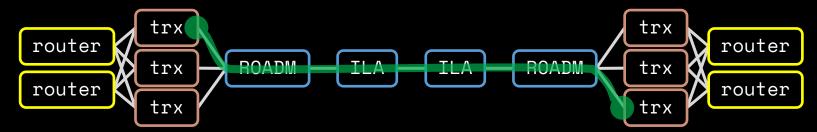
Exp.#2: Vendor Controller's API/NBI


Goal: automate optical circuits provisioning

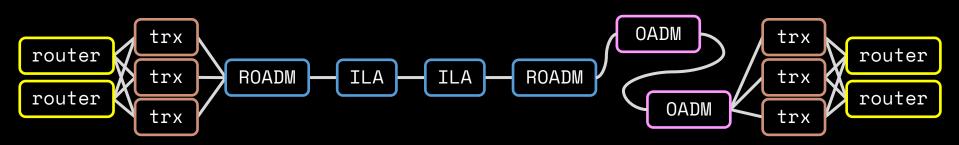
Manual procedure: ~40-50 clicks across 4 GUIs

NBI Shortcomings

Only Line-to-Line



Didn't replace clicks:


- pre-provisionig configurations
- creation of cross-connections on some cards
- fix non-meaningful names, add descriptions

NBI Shortcomings

Only Line-to-Line

Cannot do anything if there's metro OLS

Lesson Learned

- Can be a bottleneck
- You're not in the driving seat
- Use device interfaces (TL1, NETCONF, RESTCONF)

What didn't work and why

Matteo Colantonio (GARR)

The Workflow Orchestrator framework

Matteo Colantonio (GARR)

The Workflow Orchestrator

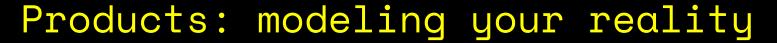
Developed by

With Espet open-sourced and registered in the Commons Conservancy

workfloworchestrator.org

Other organizations using it

What you get out of the box


An open-source framework where you

Define your network services/ entities (Products)

Track individual customer instances of those Products (Subscriptions)

Define clear procedures (Workflows) for creating, modifying, validating, and terminating Subscriptions

- FastAPI core engine + NextJS UI
- Everything is stored and tracked in the database

Define and link your building blocks:

```
class OpticalFiberBlock(ProductBlockModel,
product_block_name="OpticalFiber"):
    fiber_name: str | None = None
    oss_id: int
    terminations: ListOfPorts[OpticalDevicePortBlock]
    # ... other fields
```

Turn them into a Product:

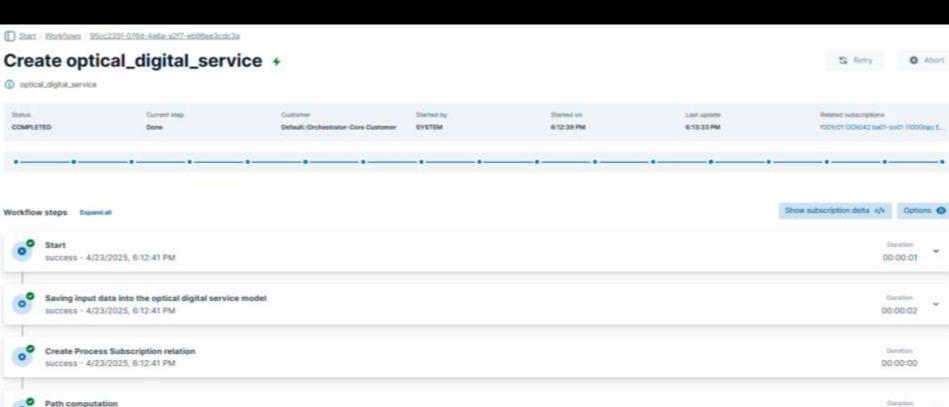
```
class OpticalFiber(SubscriptionModel):
    optical_fiber: OpticalFiberBlock
```

Workflows: making things happen

A list of Python functions (steps) - do whatever you want

Write code that does not collapse under real-world pressure to coordinate actions across devices, systems, and people

The Workflow Orchestrator framework


Matteo Colantonio (GARR)

Our implementation without config managers

Matteo Colantonio (GARR)

From 50 clicks...

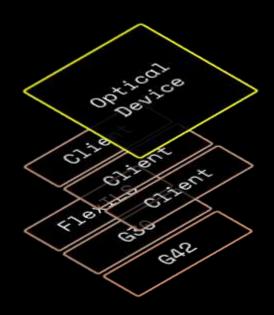
success - 4/23/2025, 6:12:42 PM

00:00:01

Easy? No. Worth it?

The real value is more than just automating tasks. It's managing the entire lifecycle of each service in a structured, repeatable, and auditable way.

- central definition of your services
- consistent execution of service management
- visibility into the state and history of each service
- a reusable toolkit for future services


Hardware changes. Products and workflows stay.

Abstract Composable Models and Device Clients

- One coherent architecture of models that aligns with our mental models

Abstract Composable Models and Device Clients

- One coherent architecture of models that aligns with our mental models
- Clients to decouple from hardware

One function to rule them all

Problem: same task, different platform For example, in a workflow step:

```
for port in subscription.optical_fiber.terminations:
   device = port.device
   port_name = port.port_name
   set_port_admin_state(device, port_name, "up")
```

Idea: one function with multiple
implementations for each platform


```
@set port admin state.register(Platform.FlexILS)
def (
    optical device: OpticalDeviceBlock,
    port name: str,
    admin_state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:
    # FlexILS implementation
@set port admin state.register(Platform.G30)
def (...same args...) -> Dict[str, Any]:
    # G30 implementation
```

Benefits: keeps code organized, easy to add new platforms, simplifies workflow logic

Keep it simple, Talk Direct

Problem:

- NBI = loss of control/functionalities
- Ansible = just adds complexity

Idea: communicate directly with devices like any other API

Benefits: simplicity and maintainability


```
@set port admin state.register(Platform.Groove G30)
def (
    optical device: OpticalDeviceBlock,
    port name: str,
    admin state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:
    ids = port name.split("-")[-1] # port-1/2/3 \rightarrow 1/2/3
    shelf id, slot id, port id = ids.split("/") # 1/2/3 \rightarrow 1, 2, 3
    g30 = g30 client(optical device.mngmt ip) # RESTCONF client
    port = g30.data.ne.shelf(shelf id).slot(slot id).card.port(port id)
    # dynamic Path \rightarrow https://{{host}}:{{port}}{{+restconf}}/data/ne:ne/shelf={{
shelf id}}/slot={{slot id}}/card/port={{port id}}
    port.modify(admin status=admin state) # PATCH method with data validation
    return port.retrieve(depth=2) # GET method
```

llatted 26

```
@set port admin state.register(Platform.GX G42)
def (
    optical device: OpticalDeviceBlock,
    port name: str,
    admin state=Literal["up", "down", "maintenance"],
) -> Dict[str, Any]:
    shelf_id, slot_id, port_id = port name.split("-") # 1-4-L1 -> 1, 4, L1
    g42 = g42 client(optical device.mngmt ip)
    port = g42.data.ne.equipment.card(f"{shelf id}-{slot id}").port(port id)
    port.modify(admin state=admin state)
    return port.retrieve(depth=2)
```

Our implementation without config managers

Matteo Colantonio (GARR)

Key Take-Aways

Scalable and
maintainable:
composable
models, stateful
instances and
procedures

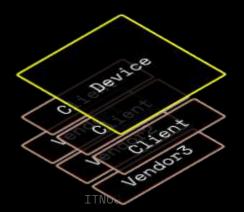
Optical Pher

connects two
client ports

Optical Digital Service

is transported by
Optical Transport
Channel

Optical Transport
Channel


travels inside an
Optical Device
ordered
list
of
is a sequence of
multiple
Pop

Spectrum Section

Path Constraints

Matteo Colantonio (GAHH)

Programmable: Use devices' programmable interfaces and YANG models, not just config lines

Sustainable
transformation:
automate one
service at a time,
nudge people out
of inertia

Questions?